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1. INTRODUCTION 

The Cauchy- Goursat theorem states that if a function is analytic at all points 
interior to and on a simple closed contour C, then the value of the integral of 
the function around that contour is zero. If, however, the function fails to be 
analytic at a finite number of points interior to C what will be the value of the 
integral of the function around that contour. We study here different types of 
complex functions which are not analytic, we study the integrals of that 
functions. We develop here the theory of residues; and we shall illustrate their 
use in certain areas of  applied mathematics. 

2. SOME PRELIMINARY DEFINITIONS 

Definition :1 ANALYTIC FUNCTIONS 

A function f is said to be analytic at a point z0 if the function is differentiable at 
some neighborhood of z0 i.e, there exists a neighborhood |z-z0|<δ at all points 
of which f’(z) exists. 

Definition :2  TAYLOR SERIES 
Let f(z) be analytic inside and on a simple closed curve C. let a and a+h be two 
points inside C. then 

f(a+h) = f(a)+ hf’(a) + 
ℎ2

2!
 f”(a) +. . . . + 

ℎ𝑛

𝑛 !
 f(n)(a) +. . . .  

Or writing z=a+h, h=z-a, 

f(z) =f(a) + f’(a)(z-a) + 
𝑓"(𝑎)

2!
  (z-a)2 +.. . . . + 

𝑓 𝑛 (𝑎)

𝑛 !
 (z-a)n +. . . .  

this is called Taylor’s series or expansion for f(a+h) or f(z). 
EXAMPLE:1 

Taylor Series expansion of f(z) = 
1

1−𝑧
 is 

 

∞

𝑛=0

 

Definition :3 SINGULAR POINT 

 A point at which f(z) fails to be analytic is called a Singular point of singularity 
of f(z). 

Definition :4  ISOLATED SINGULAR POINTS 

The point z=z0 is called an isolated singular point of f(z) if we can find δ<0 such 
that the circle |z-z0|=δ encloses no singular point other than z0. 
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 EXAMPLE : 1 

The function (z+1)/z3(z2+1)   

  has the three isolated points z=0 and z=±i 

EXAMPLE: 2 

The origin is a singular point of the principal branch 

log z =In r + i Θ  (r>0, -π< Θ < π) 
 of the logarithmic function . it is not however an isolated singular point since 
every deleted ε neighborhood of it contains points on the negative real axis 
and the branch is not even defined there. Similar remarks can be made 
regarding any branch 
 log z = In r + IƟ   (r>0, α < Ɵ < α +2π) of the logarithmic function. 

 
 
EXAMPLE: 3 

The function 
1

sin (
π

z
)
 

 has the singular points z=0 and z=1/n (n= ±1, ±2,….) , all lying on the segment 
of the real axis from z= -1 to z= 1. Each singular point z=0 is not isolated 
because every deleted ε neighborhood of then origin contains other singular 
points of the function. More precisely, when a positive number ε is specified 
and m is  any positive integer such that m> 1/ ε, the fact that 0<1/m < ε means 
that the point z=1/m lies in the deleted ε neighborhood 0<|z|< ε. 
 
 
 
Definition:5  LAURENT SERIES 
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The Laurent Series of a complex function f(z) is a representation of that 
function as a power series which includes terms of negative degree. It may be 
used to express complex functions. 
Laurent Series expansion is 

f(z)=a0 +a1(z-a) +a2(z-a)2+ . . ..+ 
𝑎−1

𝑧−𝑎
 + 

𝑎−2

(𝑧−𝑎)2
 + ….. 

 
Definition :6  MACLAURIN SERIES 
A Maclaurin Series is a power series that allows one to calculate an 
approximation of a function f(x) for input values close to zero. 
 
EXAMPLE :1 
Let us show that 
  ʃc exp (1/z2) dz = 0 
when C  is the same oriented circle |z|=1 . since 1/z2 is analytic everywhere 
except at the origin. The same is true of the integrand. The isolated singular 
point z=0 is interior to C. with the aid of the Maclaurin series representation 
  ez= 1+ z/1! + z2/2! + z3/3! + …… (|z|<∞) 
and the Laurent series expansion 
 exp (1/z2) = 1+ 1/1!.1/z2 + 1/2!.1/z4 + 1/3!.1/z6 + ….. (0<|z|< ∞) 
the residue of the integrand at its isolated singular point z=0 is , therefore, zero 
(b1=0) and the value is established. 
 
EXAMPLE :3 
A residue can also be used to evaluate the integral 

   
𝑐

dz/z(z-2)
4
 

where C is the positively oriented circle |z-2|=1. Since the integrand is analytic 
everywhere in the finite plane except at the points z=0 and z=2, it has a Laurent 
Series representation that is valid in the punctured disk 0<|z-2|<2. 
 Now using Maclaurin series expansion 

 
1

1−𝑧
 =  𝑧∞

𝑛=0
n  (|z|<1)  

 and using it to write 

  1/z(z-2)4  = 1/(z-2)4 . 
1

2+(𝑧−2)
 

                            = 1/2(z-2)4  . 
1

1−( −
𝑧−2

2
)
 

                         =   1∞
𝑛=0 . (-1)

n
 /2n+1 . (z-2)

n-4
                        (0<|z-2|<2) 

In this Laurent series, the coefficient of 1/(z-2) is the desired residue , namely -
1/16. Consequently, 
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𝑑𝑧

𝑧(𝑧−2)4𝑐
 = 2πi (- 

1

16
) = - 

πi

8
 

 
 
 

3. RESIDUES 

 
When z0 is an isolated singular point of a function f, there is a positive number 
R2 such that f is analytic at each point z for which 0<|z-z0|< R2, consequently, 
f(z) has a Laurent Series representation. 

1. f(z) =  a∞
𝑛= n(z-z0)n+

𝑏1

(𝑧−𝑧0)
 + 𝑏2

(𝑧−𝑧0)2+…..+
𝑏𝑛

(𝑧−𝑧0)𝑛
+……  (0<|z-z0|<R2)  

where the coefficients an and bn have certain integral representations. 

bn= 
1

2πi
  

𝑓 𝑧 𝑑𝑧

(𝑧−𝑧0)−𝑛+1𝑐
     (n=1,2….) 

where C is any positively oriented simple closed contour around z0 that lies 
in the punctured disk 0<|z-z0|<R2. When n=1, this expression for bn 
becomes 
 
2.  𝑓(𝑧)

𝑐
dz = 2πib1 

the complex number b1 ,which is the coefficient of 1/(z-z0) is called the 
Residue of f at the isolated singular point z0 and we shall ofter write 
b1= Res z=z0  f(z)                                                 

 then equation 2. becomes 
3.  𝑓(𝑧)

𝑐
= 2πi Res𝑧=𝑧0

𝑓(𝑧) 

   sometimes we simply use B  to denote the residue when the function f and 
the point z0 are clearly indicated. 

 
 
EXAMPLE : 1 
 Consider the integral 
    𝑧2

𝐶
 sin(1/z) dz 
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where C is the positively oriented nit circle |z|=1. Since the integrand is 
analytic everywhere is the finite plane except at z=0, it has a Laurent Series 
representation that is valid when 0<|z|<∞. Thus  the value of the integral is 2πi 
times the residue of its integrand at z=0.  

 
To determine that residue , the Maclaurin series representation 
   sin z = z – z3/3! + z5/5! + z7/7! + …..(|z|<∞) 
 and use it to write 
  z2 sin(1/z) = z – 1/3!.1/z + 1/5!.1/z3 – 1/7!. 1/z5 + …. (0<|z|< ∞ ) 
the coefficient of 1/z here is the desired residue. Consequently, 

   𝑧2
𝐶

 sin(1/z) dz = 2πi (-1/3!) = - 
πi

3
 

EXAMPLE :2 
Let us show that 

  exp  
1

𝑧2 𝑑𝑧𝐶
 =0 

When C is the same oriented circle |z|=1 . since a/z2 is analytic everywhere 
except at the origin, the same is true of the integrand. The isolated singular 
point z=0 is interior to C. with the aid of the Laurent series representation 

exp (
1

𝑧2
)=1+ 

1

1!
 . 

1

𝑧2
 +

1

2!
 .

1

𝑧4
 +

1

3!
 .

1

𝑧6
 +. . . . (|z|<∞) 

the residue of the integrand at its isolated singular point z=0 is therefore zero 
(b1=0), and the value of integral is established. 

 
 

4. CAUCHY’S RESIDUE THEOREM 

If, except for a finite number of singular points, a function f is analytic inside a 
simple closed contour C, those singular  points must be isolated. The following 
theorem, which is known as Cauchy’s Residue Theorem, is a precise 
statement of the fact that if f is also analytic on C and if C is positively oriented, 
then the value of the integral of f around C is 2πi times the sum of the residues 
of f at the singular points inside C. 
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THEOREM : 1 
 Let C be a simple closed contour, described in the positive sense. If a function f 
is analytic inside and on C except for a finite number of singular points zk (k= 
1,2,….,n) inside C, then 
   𝑓(𝑧)

𝐶
 dz= 2πi  𝑅𝑒𝑠𝑛

𝑘=1 z=zk f(z)      ………………(i) 

 
Proof:- 
To prove the theorem , let the points zk (k=1,2,…,n) be centers of positively 
oriented circles ck which are interior to C and are so small that no two of them 
have points in common. The circles Ck, together with the simple closed contour 
C form the boundary of a closed region throughout which f is analytic and 
whose interior is a multiply connected domain consisting of the points  inside C 
and exterior to each Ck. Hence, according to the adaptation of Cauchy-Goursat 
theorem to such domains. 

 𝑓 𝑧 𝑑𝑧
𝐶

 -  ʃ𝑛
𝑘=1 Ck f(z)dz=0 

This residues to equation (i) because 
  𝑓 𝑧 𝑑𝑧

𝐶𝑘
 = 2πi Resz=zk f(z)  (k =1,2,….,n) 

Hence the proof. 
 
EXAMPLE :1 
Let us use Cauchy’s Residue theorem to evaluate the integral 

  
5𝑧−2

𝑧(𝑧−1)
𝑑𝑧

𝐶
  

where C is the circle |z|=2 described counterclockwise. The integrand has the 
two isolated singularities z=0 and z=1 both of which are interior to C. we can 
find the residues B1 at z=0 and B2 at z=1 with the aid of the Maclaurin series 

 
1

1−𝑧
 = 1+z+z2+…..            (|z|<1) 

we observe first that when 0<|z|<1 

 
5𝑧−2

𝑧(𝑧−1)
 = 

5𝑧−2

𝑧
 . 

−1

1−𝑧
 = (5 - 

2

𝑧
 )(-1-z-z2- ……) 

And by indentifying the coefficient of 1/z in the product on the right here, we 
find that B1=2 also, since 



10 
 

 
5𝑧−2

𝑧(𝑧−1)
 = 

5 𝑧−1 +3

𝑧−1
 . 

1

1+(𝑧−1)
 

                       =(5+
3

𝑧−1
) [1-(z-1)+(z-1)2-….] 

When 0<|z-1|<1, it is clear that B2=3. Thus 

  
5𝑧−2

𝑧(𝑧−1)
𝑑𝑧

𝐶
= 2πi (B1+B2) = 10πi 

 
in this example it is actually simpler to write the integrand as the sum of its 
partial functions: 

 
5𝑧−2

𝑧(𝑧−1)
 = 

2

𝑧
 + 

3

𝑧−1
 

Then ,since 2/z is already a Lauren series when 0<|z|<1 and since 3/(z-1) is a 
Laurent Series when 0<|z-1|<1. It follows that 

  
5𝑧−2

𝑧(𝑧−1)
𝑑𝑧

𝐶
= 2πi(2) + 2πi(3) = 10πi 

 
5. RESIDUE AT INFINITY 

 

Suppose that a function f is analytic throughout the finite plane except for a 
finite number of singular points interior to a positively oriented simple closed 
contour C. next, let R1 denote a positive number which is large enough that C 
lies inside the circle |z|=R1. The function f is evidently analytic throughout the 
domain R1<|z|<∞  , the point at infinity is then said to be an isolated singular 
point of f. 
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Now let C0 denote a circle |z|=R0, oriented in the clockwise direction. Where 
R0> R1. The residue of f at infinity is defined by means of the equation 
1.  𝑓 𝑧 𝑑𝑧

𝐶0
= 2πi Res z=∞ f(z)  

note that the circle C0 keeps the point at infinity on the left. Just as the singular 
point in the finite plane is on the left. Since f is analytic throughout the closed 
region bounded by C and C0, the principle of deformation of paths tell us that 
  𝑓 𝑧 𝑑𝑧

𝐶
=  𝑓 𝑧 𝑑𝑧

−𝐶0
 = - 𝑓 𝑧 𝑑𝑧

𝐶0
 

so in view of dentition (1) 
2.  𝑓 𝑧 𝑑𝑧

𝐶
 = -2πi Resz=∞ f(z) 

to find this residue, writing the Laurent Series 
3. f(z) =  𝑐∞

𝑛=−∞ nzn  (R1<|z|<∞) 
where, 

4. Cn = 
1

2𝜋𝑖
  𝑓 𝑧 𝑑𝑧
−𝐶0

/zn+1  (n=0,±1, ±2,……) 

 Replacing z by 1/z in expansion (3) and then multiplying through the 
result by 1/z2 we see that 

(1/z2)f(
1

𝑍
) =  𝐶∞

𝑛=−∞ n/zn+2= 𝐶∞
𝑛=−∞ n-2/zn   (0<|z|< 1/R1) 

and  

 C-1= Resz=0 [(
1

𝑧2) f(
1

𝑧
)] 

Putting n=-1 in expression (4) we have 

 C-1 = 
1

2𝜋𝑖
  𝑓 𝑧 𝑑𝑧
−𝐶0

 

Or 
5.  𝑓 𝑧 𝑑𝑧

𝐶0
 = -2πi Resz=0 [1/z2 f(1/z)] 

note how it follows from this and definition(1) that 

 6. Resz=∞ f(z) = -Resz=o [
1

𝑧2 f(
1

𝑧
)] 

With equations (2) and (6) , the following theorem is now established. This 
theorem is sometimes more efficient to use than Cauchy’s residue theorem 
since it involves only one residue. 
THEOREM:2   If a function f is analytic everywhere in the finite plane except for 
a finite number of singular points interior to a positively oriented simple closed 
contour C. 
 
Proof:- In the Laurent expansion for f(z) around z0, for a given k we have  

ak = 
1

2𝜋𝑖
  

𝑓(𝑧)

(𝑧−𝑧0)𝑘+1𝐶
 dz 

 so using k = 1, the result follows 
 the coefficient a−1 will be very important for our uses so we give it its own 
name. 
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 If f(z) =  𝑎𝑘𝑧
𝑘∞

𝑘=−∞  
 in a deleted neighborhood of z0, then we call the coefficient a−1 the residue of f 
at z0 and we denote it by Res(f; z0). 
 Evaluation of residues is fairly straight forward and we do not (always) have to 
find the Laurent expansion explicitly to find residues. 
 
EXAMPLE:1 
We evaluate the integral of 

f(z) = 
5𝑧−2

𝑧(𝑧−1)
 

around the cirle |z|=2 described counterclockwise, by finding the residues of 
f(z) at z=0 and z=1. Since 
1

𝑧2
f(

1

𝑧
) = 

5−2𝑧

𝑧(1−𝑧)
 = 

5−2𝑧

𝑧
 . 

1

1−𝑧
 =(

5

𝑧
 - 2) (1+z+z2+. . . . +)= 

5

𝑧
 +3+3z+. . ..    (0<|z|<1) 

We see that the theorem here can also be used , where the desired residue is 
5. More precisely 

ʃC 
5𝑧−2

𝑧(𝑧−1)
 dz = 2πi(5)  = 10πi 

where C is the circle in question. This is of course the result. 
 
 
 
EXAMPLE :2 
Consider the function f(z) = 1 + z-1, z≠0. Then  
F(w) = f(1/w) =1 +w (w≠0), and lim w→0 F w  =1. 
Thus F(w) has a removable singularity at w=0 and therefore, the point at 
infinity is a removable singularity of f(z) . Further, Res [f(z);∞] = -1. From this 
we also observe that if f has a removable singularity at the point at infinity, 
then the residue of f at ∞ may prove to be non-zero in contrast to the case 
when f has removable singularity at a finite point. 
 
 
 

6. THE THREE TYPES OF ISOLATED SINGULAR 

POINTS 

I. POLES :- If z0 is not a singular point and we can find a positive integer 
n such that lim𝑧→𝑧0

(𝑧 − 𝑧0)𝑛𝑓 𝑧  = A≠0, then z=z0 is called a Pole of 

order n. If n=1, z0 is called a simple pole. 

Example:- f(z) = 
1

(𝑧−2)3
 has a pole of order 3 at z=2. 
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II. REMOVABLE SINGULARITIES :-  If a single valued function f(z) is not 
defined at z=a but lim

𝑧→𝑎
f(z) exists, then z=a is called a Removable 

Singularity. In such case we define f(z) at z=a as equal to lim
𝑧→𝑎

f(z), and 

f(z) will then be analytic at a. 

Example :- If f(z)= 
𝑠𝑖𝑛𝑧

𝑧
  , then z=0 is a removable singularity since f(0) is not 

defined but lim
𝑧→𝑎

 
𝑠𝑖𝑛𝑧

𝑧
 = 1. 

III. ESSENTIAL SINGULARITIES :- If f(z) is a single-valued function, then 
any singularity which is not a pole or  removable singularity is called 
an  essential singularity. If z=a is an essential singularity of f(z) , the 
principle part of the Laurent Series expansion has infinitely many 
terms. 

Example:- Since     e1/z = 1+ 
1

𝑧
 + 

1

2!𝑧2
 + 

1

3!𝑧3
 + . . . . , z=0 is an essential 

singularity. 
 
 

7. RESIDUES AT POLES 

 
When a function f has an isolated singularity at a point z0 ,the basic method for 
identifying z0 as a pole and finding the residue there is to write the appropriate 
Laurent Series and to note the coefficient of 1/(z-z0). The following theorem 
provides an alternative characterization of poles and a way of finding residues 
at poles that is often more convenient. 
 
THEOREM :3 
An isolated singular point z0 of a function f is a pole of order m if and only if f(z) 
can be written in the form 

1. f(z) = 
𝜑(𝑧)

(𝑧−𝑧0)𝑚
 

Where φ(z) is analytic and nonzero at z0. Moreover, 
2. Resz=z0 f(z) = φ(z0) if m=1 
 And 

3. Resz=z0f(z) =  
φ m−1 (z0)

 𝑚−1 !
     if m≥2 

Observe that expression need not have been written separately since with the 
convention that φ 0  z0  = φ z0) and 0!=1, expression 3 reduces to it when 
m=1. 
To prove the theorem, we first assume that f(z) has the form (1) and since the 
φ z  is analytic at z0, it has a Taylor series representation 
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φ(z) = φ(z0) + 
φ ′(z0)

1!
 (z-z0) + 

φ"(z0)

2!
 (z-z0)2 + …..+ 

φ m−1  (z0)

 𝑚−1 !
 (z-z0)m-1 +  

φ n  (z0)

𝑛 !
∞
𝑛=𝑚  

(z-z0)n 

 In some neighborhood |z-z0|< ε of z0; and from expression (1) it follows that 

  f(z) = 
φ(z0)

(𝑧−𝑧0))𝑚
 + 

φ′(z0)/1!

(𝑧−𝑧0))𝑚−1
 + 

φ′′ (z0)/2!

(𝑧−𝑧0))𝑚−2
 + . . . . + 

φ(m−1)(z0)/(m−1)!

(𝑧−𝑧0)
 +  

φ n  (z0)

𝑛 !
∞
𝑛=𝑚  

(z-z0)n-m 

when 0<|z-z0|< ε. This is Laurent series representation, together with the fact 
that φ(z0)≠0 reveals that z0 is indeed, a pole of order m of f(z). the coefficient 
of 1/(z-z0) tells us of course that the residue of f(z) at z0 is as in the statement of 
the theorem. 
Suppose, on the other hand, that we know only that z0 is a pole of order m of f 
or that f(z) has a Laurent Series representation 

 F(z) =  𝑎∞
𝑛=0 n(z-z0) + 

𝑏1

(𝑧−𝑧0)
 + 

𝑏2

(𝑧−𝑧0)2
 + . . . . + 

𝑏𝑚−1

(𝑧−𝑧0)𝑚−1
 +

𝑏𝑚

(𝑧−𝑧0)𝑚
              (bm≠0) 

Which is valid in a punctured disk 0<|z-z0|<R2. The function  φ(z) defined by 
means of the equations 
 Φ(z) =  (z-z0)mf(z)  when z≠z0 
   bm   when z=z0 

evidently has the power series representation 
  φ(z) = bm + bm-1(z-z0) + . . . . + b2(z-z0)m-2 + b1(z-z0)m-1 +  𝑎∞

𝑛=0 n(z-z0)m+n 

throughout the entire disk |z-z0|<R2. Consequently, φ(z) is analytic in that disk 
and in particular at z0. Inasmuch as φ(z0) = bm ≠0, expression (1) is established; 
and the proof of the theorem is complete. 
 
EXAMPLE :1 
The function  

  f(z) = 
𝑧+1

𝑧2+9
 

  Has an isolated singular point at z=3i and can be written 

    f(z) = 
φ(z)

𝑧−3𝑖
   where φ(z) = 

𝑧+1

𝑧+3𝑖
 

Since φ(z) is analytic at z=3i and φ(3i)≠0, that point is a simple pole of the 
function f; and the residue there is 

B1 = φ(3i)= 
3𝑖+1

6𝑖
 . 
−𝑖

−𝑖
 = 

3−𝑖

6
 

The point z=-3i is also a simple pole of f, with residue 

B2 = 
3+𝑖

6
 

EXAMPLE:2 

If  f(z)= 
𝑧3+2𝑧

(𝑧−𝑖)3
 

Then  f(z)= 
φ(𝑧)

(𝑧−𝑖)3
    where φ(z) =z3+2z 
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The function φ(z) is entire and φ(i)=i≠0. Hence f has a pole of order 3 at z=i, 
with residue 

 B= 
φ"(i)

2!
 = 

6𝑖

2!
 = 3i 

The theorem can of course, be used when branches of multiple-valued 
functions are involved. 
 
EXAMPLE: 3 
If for instance, the residue of the function 

    F(z) = 
sinh 𝑧

𝑧4  

Is needed at the singularity z=0, it would be incorrect to write 

F(z) = 
φ(z)

𝑧4
 where φ(z)=sinh z 

And to attempt an application of formula with m=4. For it is necessary that 
φ(z0)≠ 0 if that formula is to be used. In this case, the simplest way to find the 
residue is to write out a few terms of the Laurent series for f(z). there it is 
shown that z=0 is a pole of the third order, with residue B=1/6. 
 

8. FURTHER STUDIES 

Next we can study the behavior of function near poles. 
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